181 research outputs found

    Cepheid limb darkening, angular diameter corrections, and projection factor from static spherical model stellar atmospheres

    Full text link
    Context. One challenge for measuring the Hubble constant using Classical Cepheids is the calibration of the Leavitt Law or period-luminosity relationship. The Baade-Wesselink method for distance determination to Cepheids relies on the ratio of the measured radial velocity and pulsation velocity, the so-called projection factor and the ability to measure the stellar angular diameters. Aims. We use spherically-symmetric model stellar atmospheres to explore the dependence of the p-factor and angular diameter corrections as a function of pulsation period. Methods. Intensity profiles are computed from a grid of plane-parallel and spherically-symmetric model stellar atmospheres using the SAtlas code. Projection factors and angular diameter corrections are determined from these intensity profiles and compared to previous results. Results. Our predicted geometric period-projection factor relation including previously published state-of-the-art hydrodynamical predictions is not with recent observational constraints. We suggest a number of potential resolutions to this discrepancy. The model atmosphere geometry also affects predictions for angular diameter corrections used to interpret interferometric observations, suggesting corrections used in the past underestimated Cepheid angular diameters by 3 - 5%. Conclusions. While spherically-symmetric hydrostatic model atmospheres cannot resolve differences between projection factors from theory and observations, they do help constrain underlying physics that must be included, including chromospheres and mass loss. The models also predict more physically-based limb-darkening corrections for interferometric observations.Comment: 8 pages, 6 figures, 2 tables, accepted for publication in A&

    Calcineurin and Protein kinase G regulate C. elegans behavioral quiescence during locomotion in liquid

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Most rhythmic motor behaviors in nature are episodic i.e. they alternate between different behavioral states, including quiescence. Electrophysiological studies in invertebrate behavioral switching, maintenance and quiescence have elucidated several neuronal mechanisms that generate a temporal pattern in behavior. However, the genetic bases of these processes are less well studied. We have previously uncovered a novel episodic behavior exhibited by <it>C. elegans </it>in liquid media where they alternate between distinct phases of rhythmic swimming and quiescence. Here, we have investigated the effect of several genes and their site of action on the behavioral quiescence exhibited in liquid by the nematode <it>C. elegans</it>.</p> <p>Results</p> <p>We have previously reported that high cholinergic signaling promotes quiescence and command interneurons are critical for timing the quiescence bout durations. We have found that in addition to command interneurons, sensory neurons are also critical for quiescence. We show that the protein phosphatase calcineurin homolog <it>tax-6 </it>promotes swimming whereas the protein kinase G homolog <it>egl-4 </it>promotes quiescence. <it>tax-6 </it>expression in the sensory neurons is sufficient to account for its effect. <it>egl-4 </it>also acts in multiple sensory neurons to mediate its effect on quiescence. In addition our data is consistent with regulation of quiescence by <it>egl-4 </it>acting functionally downstream of release of acetylcholine (ACh) by motor neurons.</p> <p>Conclusions</p> <p>Our study provides genetic evidence for mechanisms underlying the maintenance of a behavioral state operating at multiple neuronal levels through the activities of a kinase and a phosphatase. These results in a genetically tractable organism establish a framework for further dissection of the mechanism of quiescence during episodic behaviors.</p

    The RR Lyrae Distance Scale

    Get PDF
    We review seven methods of measuring the absolute magnitude M_V of RR Lyrae stars in light of the Hipparcos mission and other recent developments. We focus on identifying possible systematic errors and rank the methods by relative immunity to such errors. For the three most robust methods, statistical parallax, trigonometric parallax, and cluster kinematics, we find M_V (at [Fe/H] = -1.6) of 0.77 +/- 0.13, 0.71 +/- 0.15, 0.67 +/- 0.10. These methods cluster consistently around 0.71 +/- 0.07. We find that Baade-Wesselink and theoretical models both yield a broad range of possible values (0.45-0.70 and 0.45-0.65) due to systematic uncertainties in the temperature scale and input physics. Main-sequence fitting gives a much brighter M_V = 0.45 +/- 0.04 but this may be due to a difference in the metallicity scales of the cluster giants and the calibrating subdwarfs. White-dwarf cooling-sequence fitting gives 0.67 +/- 0.13 and is potentially very robust, but at present is too new to be fully tested for systematics. If the three most robust methods are combined with Walker's mean measurement for 6 LMC clusters, V_{0,LMC} = 18.98 +/- 0.03 at [Fe/H] = -1.9, then mu_{LMC} = 18.33 +/- 0.08.Comment: Invited review article to appear in: `Post-Hipparcos Cosmic Candles', A. Heck & F. Caputo (Eds), Kluwer Academic Publ., Dordrecht, in press. 21 pages including 1 table; uses Kluwer's crckapb.sty LaTeX style file, enclose

    Modern Electronic Techniques Applied to Physics and Engineering

    Get PDF
    Contains reports on seven research projects.Office of Scientific Research and Development (OSRD) OEMsr-26

    Dynamical Movement Primitives: Learning Attractor Models for Motor Behaviors

    Get PDF
    Nonlinear dynamical systems have been used in many disciplines to model complex behaviors, including biological motor control, robotics, perception, economics, traffic prediction, and neuroscience. While often the unexpected emergent behavior of nonlinear systems is the focus of investigations, it is of equal importance to create goal-directed behavior (e.g., stable locomotion from a system of coupled oscillators under perceptual guidance). Modeling goal-directed behavior with nonlinear systems is, however, rather difficult due to the parameter sensitivity of these systems, their complex phase transitions in response to subtle parameter changes, and the difficulty of analyzing and predicting their long-term behavior; intuition and time-consuming parameter tuning play a major role. This letter presents and reviews dynamical movement primitives, a line of research for modeling attractor behaviors of autonomous nonlinear dynamical systems with the help of statistical learning techniques. The essence of our approach is to start with a simple dynamical system

    Transition from children's to adult services for adolescents/young adults with life-limiting conditions : developing realist programme theory through an international comparison

    Get PDF
    Abstract Background Managing transition of adolescents/young adults with life-limiting conditions from children’s to adult services has become a global health and social care issue. Suboptimal transitions from children’s to adult services can lead to measurable adverse outcomes. Interventions are emerging but there is little theory to guide service developments aimed at improving transition. The Transition to Adult Services for Young Adults with Life-limiting conditions (TAYSL study) included development of the TASYL Transition Theory, which describes eight interventions which can help prepare services and adolescents/young adults with life-limiting conditions for a successful transition. We aimed to assess the usefulness of the TASYL Transition Theory in a Canadian context to identify interventions, mechanisms and contextual factors associated with a successful transition from children’s to adult services for adolescents/young adults; and to discover new theoretical elements that might modify the TASYL Theory. Methods A cross-sectional survey focused on organisational approaches to transition was distributed to three organisations providing services to adolescents with life-limiting conditions in Toronto, Canada. This data was mapped to the TASYL Transition Theory to identify corresponding and new theoretical elements. Results Invitations were sent to 411 potentially eligible health care professionals with 56 responses from across the three participating sites. The results validated three of the eight interventions: early start to the transition process; developing adolescent/young adult autonomy; and the role of parents/carers; with partial support for the remaining five. One new intervention was identified: effective communication between healthcare professionals and the adolescent/young adult and their parents/carers. There was also support for contextual factors including those related to staff knowledge and attitudes, and a lack of time to provide transition services centred on the adolescent/young adult. Some mechanisms were supported, including the adolescent/young adult gaining confidence in relationships with service providers and in decision-making. Conclusions The Transition Theory travelled well between Ireland and Toronto, indicating its potential to guide both service development and research in different contexts. Future research could include studies with adult service providers; qualitative work to further explicate mechanisms and contextual factors; and use the theory prospectively to develop and test new or modified interventions to improve transition

    Face Value: The Rhetoric of Facial Disfigurement in American Film and Popular Culture, 1917-27

    Get PDF
    This is the author accepted manuscript. The final version is available from Taylor & Francis via the DOI in this record.The return of facially disfigured men from the trenches of World War One occasioned a muted public reaction in the US. However, this article will show that burgeoning discourses concerning plastic surgery in the US also generated a significant reaction in the popular press, and that these were reflected, too, in several feature films dealing with facial surgery on disfigured veterans. Though several of these films depicted miraculous transformations occasioned by the surgeons, Robert Florey’s 1927 film, Face Value, focused on an American veteran with facial scarring that could not be repaired. The article will argue that this film drew strongly upon the increasingly prominent public presence of the gueules cassĂ©es in the US during 1926 and 1927. Depicting gueules cassĂ©es and their facial injuries prominently in several scenes, the film brought to attention difficult questions concerning the futures of such men, which the US media had hitherto rarely addressed

    Urocortin protects chondrocytes from NO-induced apoptosis: a future therapy for osteoarthritis?

    Get PDF
    Osteoarthritis (OA) is characterized by a loss of joint mobility and pain resulting from progressive destruction and loss of articular cartilage secondary to chondrocyte death and/ or senescence. Certain stimuli including nitric oxide (NO) and the pro-inflammatory cytokine tumor necrosis factor α (TNF-α have been implicated in this chondrocyte death and the subsequent accelerated damage to cartilage. In this study, we demonstrate that a corticotrophin releasing factor (CRF) family peptide, urocortin (Ucn), is produced by a human chondrocyte cell line, C-20/A4, and acts both as an endogenous survival signal and as a cytoprotective agent reducing the induction of apoptosis by NO but not TNF-α when added exogenously. Furthermore, treatment with the NO donor S-nitroso-N-acetyl-D-L-penicillamine upregulates chondrocyte Ucn expression, whereas treatment with TNF-α does not. The chondroprotective effects of Ucn are abolished by both specific ligand depletion (with an anti-Ucn antibody) and by CRF receptor blockade with the pan-CRFR antagonist α-helical CRH(9-41). CRFR expression was confirmed by reverse transcription-PCR with subsequent amplicon sequence analysis and demonstrates that C-20/A4 cells express both CRFR1 and CRFR2, specifically CRFR1α and CRFR2ÎČ. Protein expression of these receptors was confirmed by western blotting. The presence of both Ucn and its receptors in these cells, coupled with the induction of Ucn by NO, suggests the existence of an endogenous autocrine/paracrine chondroprotective mechanism against stimuli inducing chondrocyte apoptosis via the intrinsic/mitochondrial pathway

    Targeted kinase inhibition relieves slowness and tremor in a Drosophila model of LRRK2 Parkinson’s disease

    Get PDF
    Disease models: A reflex reaction A simple reflex in flies can be used to test the effectiveness of therapies that slow neurodegeneration in Parkinson’s disease (PD). Christopher Elliott and colleagues at the University of York in the United Kingdom investigated the contraction of the proboscis muscle which mediates a taste behavior response and is regulated by a single dopaminergic neuron. Flies bearing particular mutations in the PD-associated gene leucine-rich repeat kinase 2 (LRRK2) in dopaminergic neurons lost their ability to feed on a sweet solution. This was due to the movement of the proboscis muscle becoming slower and stiffer, hallmark features of PD. The authors rescued the impaired reflex reaction by feeding the flies l-DOPA or LRRK2 inhibitors. These findings highlight the proboscis extension response as a useful tool to identify other PD-associated mutations and test potential therapeutic compounds

    Nociceptors: a phylogenetic view

    Get PDF
    The ability to react to environmental change is crucial for the survival of an organism and an essential prerequisite is the capacity to detect and respond to aversive stimuli. The importance of having an inbuilt “detect and protect” system is illustrated by the fact that most animals have dedicated sensory afferents which respond to noxious stimuli called nociceptors. Should injury occur there is often sensitization, whereby increased nociceptor sensitivity and/or plasticity of nociceptor-related neural circuits acts as a protection mechanism for the afflicted body part. Studying nociception and nociceptors in different model organisms has demonstrated that there are similarities from invertebrates right through to humans. The development of technology to genetically manipulate organisms, especially mice, has led to an understanding of some of the key molecular players in nociceptor function. This review will focus on what is known about nociceptors throughout the Animalia kingdom and what similarities exist across phyla; especially at the molecular level of ion channels
    • 

    corecore